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Abstract 

Biomarker profiling from biofluids such as blood are widely measured in clinical research, using for example Olink pro‑
teomics panels. One such research focus area is cardiovascular disease (CVD), for which chronic sleep restriction (SR) 
is a risk factor. However, it remains unclear whether blood levels of commonly measured CVD biomarkers are sensi‑
tive to acute dynamic factors such as SR, physical exercise (PEx), and time of day. In this crossover design, 16 normal‑
weight, healthy men underwent three highly standardized in‑lab nights of SR (4.25 h/night) and normal sleep (NS, 
8.5 h/night) in randomized order, with 88 CVD blood protein biomarkers quantified using the Olink technology (and 
selected validation using ELISA) in the morning, evening, and immediately before and repeatedly after 30 min of high‑
intensity exercise. We found significant time‑of‑day‑dependent changes in several CVD biomarkers. Whereas several 
proteins were exercise‑induced across sleep conditions (such as the canonical exerkines IL‑ 6 and BDNF), exercise‑
induced proteomic dynamics differed in response to recurrent SR, compared with following NS. Moreover, SR com‑
pared with NS resulted in a biomarker profile previously associated with increased prospective risk of several CVDs 
across large‑scale cohorts (such as higher circulating levels of IL‑27 and LGALS9). Our findings highlight how dynamic 
physiology can modulate CVD biomarker levels. These results also underscore the need to consider sleep duration 
as a key determinant of cardiovascular health—an emphasis reflected in recent American Heart Association guide‑
lines. Further studies in women, older individuals, and patients with prior CVD, and across different chronotypes 
and dietary schedules are warranted.
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Main text – correspondence submission
To the Editor,

Sleep disruption, including chronic sleep restriction 
(SR), has been associated with an increased risk of car-
diovascular disease (CVD) and cardiovascular mortal-
ity [1, 2]. Healthy sleep duration was also added to the 
American Heart Association’s 2022 recommendation for 
cardiovascular health assessments [3]. Prospective stud-
ies often use proteomics to identify biomarkers that are 
associated with the risk of e.g., CVDs [4, 5]. However, 
despite SR being widespread [6, 7], such studies often 
fail to directly establish or take into the potential impact 
of recent sleep duration, or other physiological dynamic 
parameters, such as sample time and physical exercise 
(PEx). Notably, PEx may counteract some of the adverse 
cardiometabolic effects of poor sleep – however, without 
fully offsetting its adverse impact on CVD mortality [2, 8, 
9]. This highlights the complex interplay between sleep, 
exercise, and cardiovascular health, which helped moti-
vate our present proteomics-focused investigation. Using 
highly standardized in-lab conditions, our primary aim 
was to measure how circulating levels of a range of pro-
teins implicated in promoting cardiovascular health or 
CVD [4, 5, 10], are acutely impacted by SR versus normal 
sleep (NS), as well as by concurrent morning-to-evening 
dynamics and in response to acute PEx.

SR‑ and time‑of‑day‑dependent dynamics in blood 
proteomics
To probe CVD biomarker dynamics, we used a rand-
omized within-subject design: 16 normal-weight men 
underwent two conditions across three consecutive 
in-lab nights: a) NS (8.5 h/night), and b) recurrent SR 
(4.25 h/night; see Supplemental Methods). Across both 

conditions, 88 CVD protein biomarkers were quantified 
using the Olink CVDII panel, from serum drawn in the 
morning and evening, and before and repeatedly after 
high-intensity PEx (Fig. 1A).

First focusing on time-of-day-dependent dynamics, 
we found that a subset of proteins, such as leptin and 
lipoprotein lipase (LPL), exhibited significant morning-
to-evening changes across conditions (Table  S1 A-B). 
A greater proportion of the proteins exhibited signifi-
cant morning-to-evening dynamics during SR (33%, 
FDR < 5%) compared with NS (18%), as also indicated 
by ELISA validation (Fig.  1B-C). In contrast, significant 
early morning dynamics (pre-PEx, ~0830 h to ~1030 h) 
were only evident after NS (40% decreased) (Fig. S1).

Physical exercise modulates CVD biomarker levels
To next assess how biomarker dynamics are impacted by 
acute PEx, we had participants undergo 30 min of high-
intensity cycling on the third day of each in-lab sleep 
condition. SR compared with NS resulted in an altered 
proteomic response (hierarchical clustering-based P = 
0.048, Figs. 1D and S2 A). Indeed, immediately post- vs. 
pre-PEx (~ 15 min after the offset of PEx vs. ~ 20 min 
before PEx), blood levels of 46 proteins significantly 
increased in NS, compared with only 18 proteins under 
SR (Fig.  1E-H and S2 C; Table  S2). Among these, pro-
teins were exclusively higher in the NS condition, and 
three proteins were significantly altered only in the SR 
condition (two increased, one decreased; Fig. 1F). Sleep 
condition-specific differences following PEx may in part 
have been driven by slightly higher pre-PEx levels fol-
lowing SR vs. NS (Fig. S2B). Nevertheless, across both 
sleep conditions, 15 proteins increased in blood immedi-
ately post-PEx (Fig. 1H). This comprised several proteins 

(See figure on next page.)
Fig. 1 (below). Sleep restriction, time of day and physical exercise dynamically modulate proteomic CVD biomarker levels (related to Fig S1 ‑ 2). 
A Overview of the study protocol, illustrating the randomized crossover 2‑session study design. B Volcano plot showing proteins that exhibited 
significant changes from morning to evening in the normal sleep (NS) and recurrent sleep restriction (SR) conditions. A positive coefficient indicates 
higher protein levels at the given post‑exercise timepoint. Note that the y axis shows the uncorrected p values; significant proteins (FDR‑corrected 
P<0.05) are shown in black. C Protein quantification based on ELISA for evening‑to‑morning dynamics of GH, IL‑ 6 and VASPIN, analyzed by repeated 
measures ANOVA, across the two sleep conditions. * indicates P < 0.05, for post‑hoc analysis at 0830 h (Šídák’s multiple comparisons test). D 
Cluster analysis for the exercise timepoints. Shows line graphs for each cluster, in the NS (green, top) and SR (red, bottom) conditions. Proteins 
that appear in each cluster are plotted within the cluster as a single line (mean value) across the acute exercise timepoints (Pre‑exercise to + 240 
min). See also figure S2 A. E Line graph showing the number of proteins that exhibited significant acute exercise effects in the NS (green) and SR 
(red) conditions, with each timepoint being compared with protein levels at the pre‑exercise timepoint. The lower graph shows the directionality 
(up‑ or downregulated) of the changes at each timepoint. F Top: Volcano plots showing proteins that exhibited significant acute exercise effects 
(+ 15 min vs. Pre‑exercise) in the NS (left) and SR (right panel) conditions. A positive coefficient indicates higher protein levels at the given 
post‑exercise timepoint. Note that the Y axis shows uncorrected p‑values; significant proteins (FDR‑corrected p <0.05) are shown in black. Bottom: 
Venn diagram shows proteins that changed uniquely within each condition, and those that were shared between the NS and SR conditions. G 
Heatmap showing acute exercise effects (+15 min vs. Pre‑exercise) that were only significant in the NS condition. H Heatmap showing significant 
acute (+ 15 min vs. Pre‑Exercise) exercise effects observed across both sleep conditions. I ELISA validation of Growth hormone (GH), visceral 
adipose tissue‑derived serpin (VASPIN), Brain‑derived neurotrophic factor (BDNF) and interleukin 6 (IL‑ 6). Values are normalized within each subject, 
to the mean of each individual’s values. Analyzed by repeated measures ANOVA, across the two sleep conditions. All analyses based on n = 16 
within‑subject analyses
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Fig. 1 (See legend on previous page.)
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implicated in the beneficial effects of PEx, including the 
canonical exerkines IL- 6 and BDNF (Figs. 1I and S2D). 
In terms of magnitude, changes in immediate post-PEx-
induced (vs. pre-Ex) protein levels were in general larger 
than the morning-to-evening dynamics: ~1.4-fold larger 

on a per-protein bases in the largest (n = 60) cluster (Fig. 
S3). During later post- vs. pre- PEx timepoints, signifi-
cant increases and decreases in protein levels were simi-
lar across both sleep conditions (Figs. 1E and Fig S2E-F; 
Table S3 A-D).

Fig. 2 (below). Recurrent sleep restriction promotes changes in proteomic levels in a direction that have previously been associated 
with prospective risk of cardiovascular disease. A Volcano plot comparing relative proteomic levels after three nights of full sleep (NS) with three 
nights of sleep restriction (SR), using a mixed effects model. The X axis represents model coefficient value, where values above 0 indicate higher 
values in SR compared with NS condition. Note that the Y axis shows uncorrected p‑values; significant proteins (FDR‑corrected P < 0.05) are shown 
in black. See also Table S4 A. B Heatmap that shows relative levels for proteins that were significantly different (as seen in panel A) after three 
nights of NS compared with three nights of SR. The columns show levels across the pre‑ and post‑exercise timepoints. C Overlap of proteins 
with significantly altered levels after three nights of SR compared with NS in our study, with those identified as significantly predictive of greater 
(red circles, left column) or lower (green, right column) risk of heart failure (HF), across the 3 cohorts analyzed in [4] (see also Table S4B). The number 
of circles per row indicate across how many of the 3 studied prospective cohorts that the association with HF was identified as being significant. 
Proteins have been sorted alphabetically. All analyses based on n = 16 within‑subject analyses. D Summary of the present study findings
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SR promotes a biomarker profile associated 
with prospective CVD risk
Finally, given the association of chronic SR with CVDs, 
we wanted to investigate how SR per se may alter cir-
culating levels of CVD biomarkers. Notably, we found 
that regardless of PEx –  i.e., across timepoints compar-
ing SR with NS –  recurrent SR resulted in 16 proteins 
with significantly higher levels, and 9 with significantly 
lower levels. The upregulated set included several stress, 
interleukin, and chemokine-related proteins (Fig.  2A-
B, Table  S4 A). By comparing the changes in levels of 
the  Olink-derived biomarkers used in our study with 
associations for these Olink biomarkers in large prospec-
tive CVD cohorts (largest n = 44,313) [4, 5], we found 
that SR vs. NS resulted in a biomarker profile associated 
with a higher risk of heart failure, coronary artery dis-
ease, and atrial fibrillation  (Fisher’s exact test P = 0.006 
for data in Fig. 2C; P = 0.003 for data in Table S4B). In 
contrast, NS vs. SR predominantly increased proteins 
linked to a lower CVD risk (Fig. 2C).

Summary and future directions
Our findings (Fig. 2D), based on highly standardized in-lab 
conditions, indicate that even short-term sleep restriction 
can produce a biomarker profile associated with increased 
CVD risk. This aligns with recent American Heart Asso-
ciation guidelines [3]. For enhanced precision medicine, 
recent sleep and exercise history, and the timing of also 
blood samples and meals, should be considered when eval-
uating proteomic markers for predicting cardiovascular 
health. Further studies in women, older individuals, differ-
ent chronotypes, and patients with CVD are warranted.
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